Please use this identifier to cite or link to this item: http://repository.hoarec.org:80/home/handle/123456789/198
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUsman, Kelil-
dc.contributor.authorTsegay Deribew, Kiros-
dc.contributor.authorAlemu, Girma-
dc.contributor.authorHailu, Samuel-
dc.date.accessioned2024-07-12T12:02:05Z-
dc.date.available2024-07-12T12:02:05Z-
dc.date.issued2023-03-10-
dc.identifier.urihttp://repository.hoarec.org:80/home/handle/123456789/198-
dc.description.abstractSoil erosion is a vector of disturbances to agricultural productivity and economic development in the western highlands of Ethiopia. Yet, tough vegetation cover loss swapped to other land uses could have amplified the soil loss rate at which land cover change preceded, but little is known about their effects on soil loss in the Limu-Seqa watershed. This study was designed to evaluate the historical trends of the effects of land use-land cover change on soil erosion dynamics as a threshold for potential monitoring of soil loss. Satellite image data of 1987, 2002, 2021, and DEM-20 m resolution were used. The RUSLE model was applied with primary parameters to generate soil loss. Findings show that average annual soil loss increased from 4.5 in 1987 to 13.5 t ha− 1 yr− 1 in 2002 and surpassed to 45.35 t ha− 1 yr− 1 in 2021 as a result of LULC changes, particularly the transition of forest and overgrazed land to cropland (43.83%) and dense-forest to poor-open-up forest (6.92%) between 1987 and 2021. Soil loss during the recent study period was substantially affected by a substantial LULC change, from forest to cropland. The severe and very severe erosion risk categories jointly cover more than half of the entire catchment, which con- tributes to two-thirds of the total mean annual soil loss in the watershed, which is found to be over and above soil loss tolerance (SLT) in Ethiopia and tropical regions. Therefore, given the robust economic and political status of priority conservation measures, red hues areas are significant.en_US
dc.language.isoen_USen_US
dc.publisherHeliyonen_US
dc.subjectCropland Forest Human-induced Land cover change RUSLE Soil lossen_US
dc.titleSpatial modeling of soil loss as a response to land use-land cover change in Didessa sub-basin, the agricultural watershed of Ethiopiaen_US
dc.typeArticleen_US
Appears in Collections:DDAR

Files in This Item:
File Description SizeFormat 
Spatial modeling of soil loss as a response to land use-land cover.pdf4.85 MBAdobe PDFView/Open


Items in HoAREC Repository are protected by copyright, with all rights reserved, unless otherwise indicated.